A Sharply 2-transitive Group without a Non-trivial Abelian Normal Subgroup

نویسندگان

  • ELIYAHU RIPS
  • YOAV SEGEV
چکیده

We show that any group G is contained in some sharply 2transitive group G without a non-trivial abelian normal subgroup. This answers a long-standing open question. The involutions in the groups G that we construct have no fixed points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharply 2-transitive groups

We give an explicit construction of sharply 2-transitive groups with fixed point free involutions and without nontrivial abelian normal subgroup.

متن کامل

Finite Permutation Groups

1 Multiply transitive groups Theorem 1.1. Let Ω be a finite set and G ≤ Sym(Ω) be 2–transitive. Let N E G be a minimal normal subgroup. Then one of the following holds: (a) N is regular and elementary abelian. (b) N is primitive, simple and not abelian. Proof. First we show that N is unique. Suppose that M is another minimal normal subgroup of G, so N ∩M = {e} and therefore [N,M ] = {e}. Since ...

متن کامل

Normal edge-transitive Cayley graphs on the non-abelian groups of order $4p^2$, where $p$ is a prime number

In this paper, we determine all of connected normal edge-transitive Cayley graphs on non-abelian groups with order $4p^2$, where $p$ is a prime number.

متن کامل

Sharply 3-transitive groups

We construct the first sharply 3-transitive groups not arising from a near field, i.e. point stabilizers have no nontrivial abelian normal subgroup.

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014